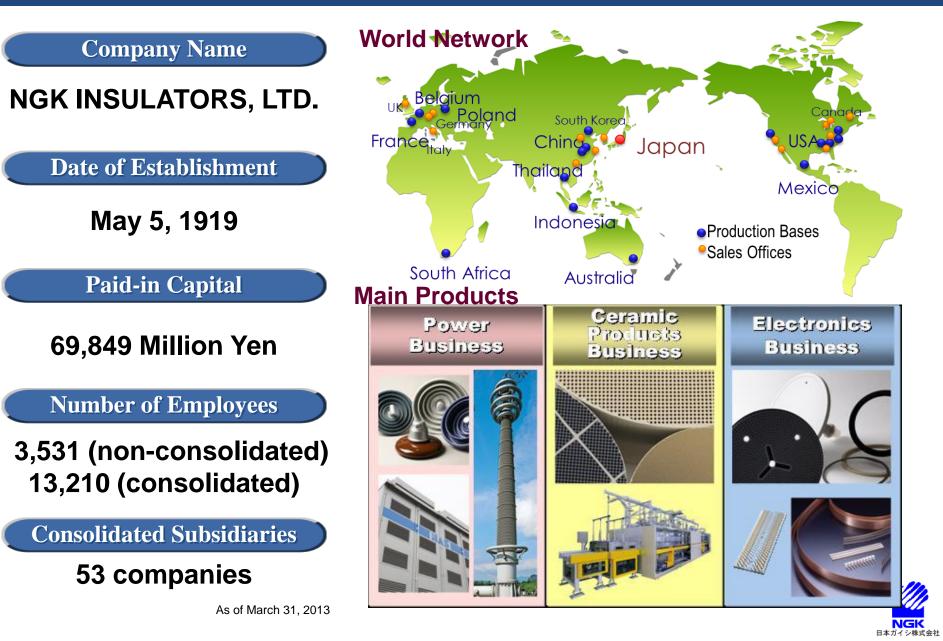
7th International Symposium on Material Testing Reactors

October 20-23, 2014, Otwock-Świerk, Poland

Beryllium Research in NGK and New Proposal for MTR Reflector Development

<u>Ryohei FUKATSU¹</u>, Keigo NOJIRI¹, Kunihiko TSUCHIYA²

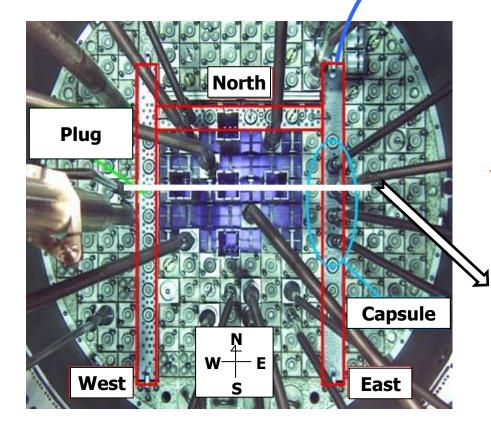
¹NGK Insulators, Itd., Handa, Aichi Japan ²Japan Atomic Energy Agency, Oarai, Ibaraki, Japan

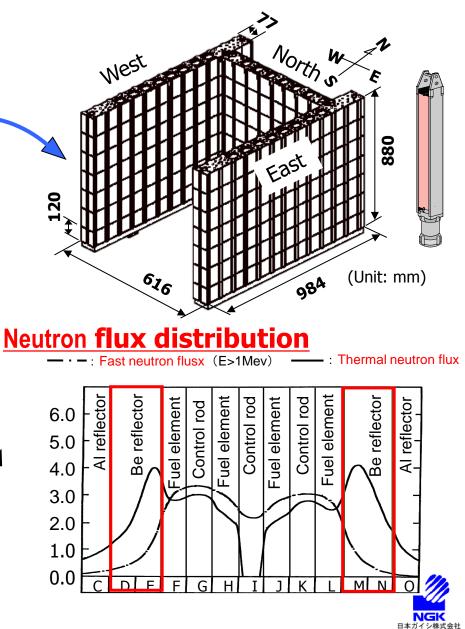


Contents

- 1. NGK Insulators, Itd.
- 2. NGK's Beryllium Business
- 3. Beryllium Reflectors in MTR
- 4. Aluminium Coating Test
 - **4-1. Introduction**
 - 4-2. Method
 - 4-3. Result
- 5. Future Plan

NGK Insulators, Itd.


NGK's Beryllium Business



Beryllium Reflectors in MTR

concentration in fuel area to irradiate the sample efficiently

2014/10/20-23

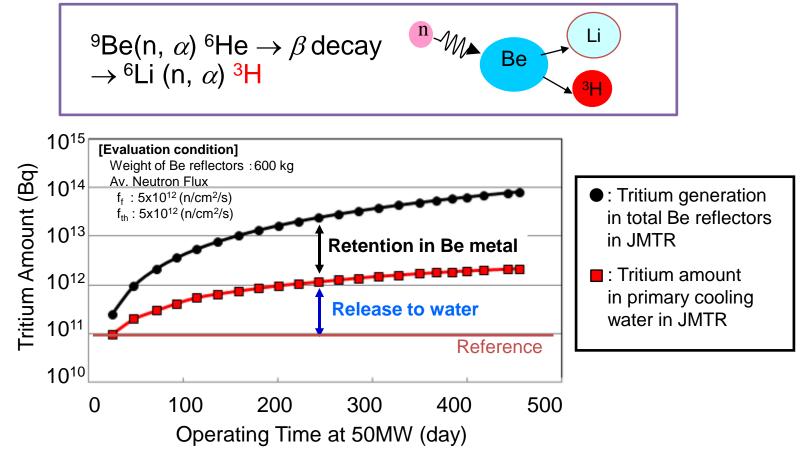
CONFIDENTIAL

Beryllium Reflectors in MTR

Generation	Term	Cumulative power (MWd)	Neutron Fluence (x10 ²⁶ m ⁻²)	Camber (mm)
1 st	1966-1974	~24,000	0.96	0.71
2 nd	1975-1983	~28,000	1.12	0.84
3 rd	1984-1987	~25,000	1.00	0.75
4 th	1988-1995	~36,000	1.44	1.24
5 th	1996-2002	~29,000	1.15	1.09
6 th	2003-2007	~25,000	1.00	0.93
7 th	Installed and waiting for the operation			

4th Generation - Design modification to improve lifetime

and 8th generation? Modification to study for easier management

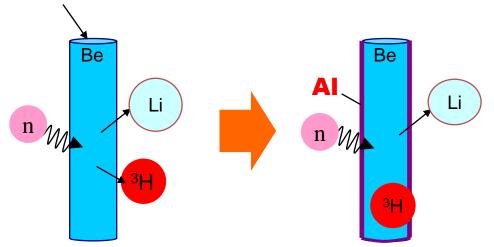


2014/10/20-23

CONFIDENTIAL

Aluminium Coating Test –Introduction-

Irradiation generates Tritium



We need to reduce tritium release to cooling water.

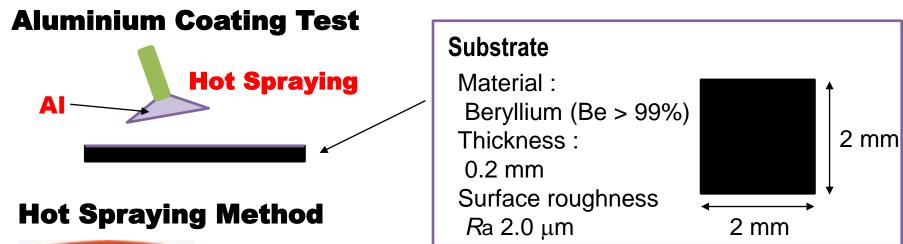
Aluminium Coating Test –Introduction-

Beryllium neutron reflector

How To Reduce ?

Coat the material on Beryllium surface

- Thickness > Recoiling distance
- Waterproof
- Minimum thickness for the reflection performance


JAEA are planning to confirm this effects with us.

2014/10/20-23

CONFIDENTIAL

Aluminium Coating Test –Method-

Supported by TOCALO

Method	Characteristic
Arc Process (Wire Process)	* Easy to spray on several materials.* Easy to spray large-capacity.
High Velocity Oxy-Fuel	* Possible to make an ultra-fine film.* Possible to spray rapidly.
Atmospheric Plasma Spraying	* Possible to make the adhesion strongly.

Aluminium Coating Test –Result-

	Arc Process	High Velocity Oxy-Fuel	Atmospheric Plasma Spraying
Secondary- Electron images	Al Be	State of the state	
Adhesion	15kV X500 50µm i Good	15kV x500 50μm Good	Very Good

Intermediate layer in Atmospehic Plasma Spraying.

Strongly adhesion was expected.

Aluminium Coating Test –Result-

	Arc Process	High Velocity Oxy-Fuel	Atmospheric Plasma Spraying
Secondary- Electron images	Al Be		
Adhaaian	15kV X500 50µm	15kV X500 50µm	15kV X500 50µm
Adhesion	Good	Good	Very Good
Void's Number	Middle	A Few	Many
Void's Size	Middle	Smaller	Bigger

Void's Number and Size. Influence to be Infiltrated the Water?

Future Plan

1st STEP : Compared Only the Aluminium Film

To confirm conditions not to influence the cooling water.

2nd STEP : Neutron Irradiation Test

To confirm conditions to protect the recoiled tritium.

